The number of Wynton users over time

users_over_time(file = NULL, since = "2017-01-01")

Arguments

file

A file with a single column of signup dates, or NULL. If NULL, then the Wynton LDAP server is queried.

since

Drop signup dates prior to this date.

Value

A tibble::tibble with columns date and total, total the cumulative sum based on date occurances.

Examples

library(dplyr)
#> 
#> Attaching package: ‘dplyr’
#> The following objects are masked from ‘package:stats’:
#> 
#>     filter, lag
#> The following objects are masked from ‘package:base’:
#> 
#>     intersect, setdiff, setequal, union

pathname <- system.file("exdata", "ldap_wynton_dates.txt", package = "wyntonquery")

signups <- users_over_time(pathname)
print(head(signups))
#> # A tibble: 6 × 2
#>   date       total
#>   <date>     <int>
#> 1 2017-02-21    15
#> 2 2017-04-20    16
#> 3 2017-04-25    17
#> 4 2017-05-23    18
#> 5 2017-07-04    19
#> 6 2017-07-11    20
print(tail(signups))
#> # A tibble: 6 × 2
#>   date       total
#>   <date>     <int>
#> 1 2024-11-15  1389
#> 2 2024-11-15  1390
#> 3 2024-11-16  1391
#> 4 2024-11-19  1392
#> 5 2024-11-19  1393
#> 6 2024-11-19  1394

## Summarize by year and month
signups <- mutate(signups, year = format(date, "%Y"))

## Signups per calendar year
signups <- mutate(signups, month = format(date, "%m"))
signups <- group_by(signups, year)
signups_per_year <- count(signups, name = "change")
signups_end_of_year <- filter(signups, date == max(date), total == max(total))
signups_per_year <- left_join(signups_per_year, signups_end_of_year)
#> Joining with `by = join_by(year)`
signups_per_year <- select(signups_per_year, year, change, total, per = date)
print(signups_per_year, n = Inf)
#> # A tibble: 8 × 4
#> # Groups:   year [8]
#>   year  change total per       
#>   <chr>  <int> <int> <date>    
#> 1 2017      27    41 2017-12-12
#> 2 2018      33    74 2018-11-30
#> 3 2019     112   186 2019-12-18
#> 4 2020     137   323 2020-12-22
#> 5 2021     142   465 2021-12-18
#> 6 2022     212   677 2022-12-23
#> 7 2023     256   933 2023-12-27
#> 8 2024     461  1394 2024-11-19

## Signups per calendar month
signups <- group_by(signups, year, month)
signups_per_month <- count(signups, name = "change")
signups_end_of_month <- filter(signups, date == max(date), total == max(total))
signups_per_month <- left_join(signups_per_month, signups_end_of_month)
#> Joining with `by = join_by(year, month)`
signups_per_month <- select(signups_per_month, year, month, change, total, per = date)
print(signups_per_month, n = Inf)
#> # A tibble: 90 × 5
#> # Groups:   year, month [90]
#>    year  month change total per       
#>    <chr> <chr>  <int> <int> <date>    
#>  1 2017  02         1    15 2017-02-21
#>  2 2017  04         2    17 2017-04-25
#>  3 2017  05         1    18 2017-05-23
#>  4 2017  07         3    21 2017-07-19
#>  5 2017  08         2    23 2017-08-11
#>  6 2017  09         1    24 2017-09-20
#>  7 2017  10         6    30 2017-10-27
#>  8 2017  11         9    39 2017-11-30
#>  9 2017  12         2    41 2017-12-12
#> 10 2018  01         1    42 2018-01-16
#> 11 2018  02         6    48 2018-02-26
#> 12 2018  03         3    51 2018-03-29
#> 13 2018  05         3    54 2018-05-14
#> 14 2018  06         1    55 2018-06-12
#> 15 2018  07         3    58 2018-07-20
#> 16 2018  08         6    64 2018-08-24
#> 17 2018  09         3    67 2018-09-07
#> 18 2018  10         2    69 2018-10-12
#> 19 2018  11         5    74 2018-11-30
#> 20 2019  01         4    78 2019-01-17
#> 21 2019  02         9    87 2019-02-21
#> 22 2019  03        17   104 2019-03-22
#> 23 2019  04        13   117 2019-04-30
#> 24 2019  05         8   125 2019-05-28
#> 25 2019  06         7   132 2019-06-30
#> 26 2019  07         7   139 2019-07-29
#> 27 2019  08         7   146 2019-08-31
#> 28 2019  09        19   165 2019-09-28
#> 29 2019  10         8   173 2019-10-31
#> 30 2019  11         6   179 2019-11-26
#> 31 2019  12         7   186 2019-12-18
#> 32 2020  01         7   193 2020-01-29
#> 33 2020  02        11   204 2020-02-29
#> 34 2020  03         9   213 2020-03-25
#> 35 2020  04        10   223 2020-04-30
#> 36 2020  05        13   236 2020-05-29
#> 37 2020  06         3   239 2020-06-19
#> 38 2020  07        11   250 2020-07-29
#> 39 2020  08        21   271 2020-08-31
#> 40 2020  09        17   288 2020-09-29
#> 41 2020  10        13   301 2020-10-30
#> 42 2020  11        15   316 2020-11-19
#> 43 2020  12         7   323 2020-12-22
#> 44 2021  01         9   332 2021-01-28
#> 45 2021  02        12   344 2021-02-26
#> 46 2021  03        11   355 2021-03-25
#> 47 2021  04         8   363 2021-04-27
#> 48 2021  05         6   369 2021-05-21
#> 49 2021  06        12   381 2021-06-30
#> 50 2021  07         6   387 2021-07-27
#> 51 2021  08        16   403 2021-08-30
#> 52 2021  09        22   425 2021-09-30
#> 53 2021  10        15   440 2021-10-27
#> 54 2021  11        13   453 2021-11-25
#> 55 2021  12        12   465 2021-12-18
#> 56 2022  01        20   485 2022-01-30
#> 57 2022  02        13   498 2022-02-26
#> 58 2022  03        26   524 2022-03-31
#> 59 2022  04        11   535 2022-04-27
#> 60 2022  05        11   546 2022-05-27
#> 61 2022  06        11   557 2022-06-25
#> 62 2022  07        17   574 2022-07-27
#> 63 2022  08        21   595 2022-08-31
#> 64 2022  09        37   632 2022-09-24
#> 65 2022  10        19   651 2022-10-26
#> 66 2022  11        19   670 2022-11-29
#> 67 2022  12         7   677 2022-12-23
#> 68 2023  01        23   700 2023-01-31
#> 69 2023  02        15   715 2023-02-28
#> 70 2023  03        17   732 2023-03-24
#> 71 2023  04        17   749 2023-04-28
#> 72 2023  05        12   761 2023-05-10
#> 73 2023  06        20   781 2023-06-30
#> 74 2023  07        22   803 2023-07-29
#> 75 2023  08        21   824 2023-08-23
#> 76 2023  09        44   868 2023-09-30
#> 77 2023  10        20   888 2023-10-25
#> 78 2023  11        25   913 2023-11-29
#> 79 2023  12        20   933 2023-12-27
#> 80 2024  01        41   974 2024-01-31
#> 81 2024  02        42  1016 2024-02-29
#> 82 2024  03        35  1051 2024-03-29
#> 83 2024  04        45  1096 2024-04-27
#> 84 2024  05        28  1124 2024-05-31
#> 85 2024  06        35  1159 2024-06-28
#> 86 2024  07        42  1201 2024-07-31
#> 87 2024  08        36  1237 2024-08-31
#> 88 2024  09        77  1314 2024-09-28
#> 89 2024  10        56  1370 2024-10-31
#> 90 2024  11        24  1394 2024-11-19


if (require("ggplot2", quietly = TRUE)) {
  gg <- ggplot(signups, aes(date, total)) + geom_line(linewidth = 2.0)
  gg <- gg + xlab("") + ylab("Number of users")
  gg <- gg + theme(text = element_text(size = 20))
  print(gg)
}