The number of Wynton users over time

users_over_time(file = NULL, since = "2017-01-01")

Arguments

file

A file with a single column of signup dates, or NULL. If NULL, then the Wynton LDAP server is queried.

since

Drop signup dates prior to this date.

Value

A tibble::tibble with columns date and total, total the cumulative sum based on date occurances.

Examples

library(dplyr)
#> 
#> Attaching package: ‘dplyr’
#> The following objects are masked from ‘package:stats’:
#> 
#>     filter, lag
#> The following objects are masked from ‘package:base’:
#> 
#>     intersect, setdiff, setequal, union

pathname <- system.file("exdata", "ldap_wynton_dates.txt", package = "wyntonquery")

signups <- users_over_time(pathname)
print(head(signups))
#> # A tibble: 6 × 2
#>   date       total
#>   <date>     <int>
#> 1 2017-02-21    12
#> 2 2017-04-25    13
#> 3 2017-05-23    14
#> 4 2017-08-10    15
#> 5 2017-08-11    16
#> 6 2017-09-20    17
print(tail(signups))
#> # A tibble: 6 × 2
#>   date       total
#>   <date>     <int>
#> 1 2025-12-11  1312
#> 2 2025-12-11  1313
#> 3 2025-12-11  1314
#> 4 2025-12-13  1315
#> 5 2025-12-17  1316
#> 6 2025-12-18  1317

## Summarize by year and month
signups <- mutate(signups, year = format(date, "%Y"))

## Signups per calendar year
signups <- mutate(signups, month = format(date, "%m"))
signups <- group_by(signups, year)
signups_per_year <- count(signups, name = "change")
signups_end_of_year <- filter(signups, date == max(date), total == max(total))
signups_per_year <- left_join(signups_per_year, signups_end_of_year)
#> Joining with `by = join_by(year)`
signups_per_year <- select(signups_per_year, year, change, total, per = date)
print(signups_per_year, n = Inf)
#> # A tibble: 9 × 4
#> # Groups:   year [9]
#>   year  change total per       
#>   <chr>  <int> <int> <date>    
#> 1 2017      14    25 2017-12-12
#> 2 2018      20    45 2018-11-30
#> 3 2019      77   122 2019-12-11
#> 4 2020      87   209 2020-12-22
#> 5 2021     109   318 2021-12-18
#> 6 2022     134   452 2022-12-21
#> 7 2023     168   620 2023-12-22
#> 8 2024     250   870 2024-12-28
#> 9 2025     447  1317 2025-12-18

## Signups per calendar month
signups <- group_by(signups, year, month)
signups_per_month <- count(signups, name = "change")
signups_end_of_month <- filter(signups, date == max(date), total == max(total))
signups_per_month <- left_join(signups_per_month, signups_end_of_month)
#> Joining with `by = join_by(year, month)`
signups_per_month <- select(signups_per_month, year, month, change, total, per = date)
print(signups_per_month, n = Inf)
#> # A tibble: 101 × 5
#> # Groups:   year, month [101]
#>     year  month change total per       
#>     <chr> <chr>  <int> <int> <date>    
#>   1 2017  02         1    12 2017-02-21
#>   2 2017  04         1    13 2017-04-25
#>   3 2017  05         1    14 2017-05-23
#>   4 2017  08         2    16 2017-08-11
#>   5 2017  09         1    17 2017-09-20
#>   6 2017  10         1    18 2017-10-23
#>   7 2017  11         5    23 2017-11-21
#>   8 2017  12         2    25 2017-12-12
#>   9 2018  01         2    27 2018-01-26
#>  10 2018  02         4    31 2018-02-26
#>  11 2018  03         2    33 2018-03-29
#>  12 2018  05         2    35 2018-05-14
#>  13 2018  07         1    36 2018-07-18
#>  14 2018  08         3    39 2018-08-24
#>  15 2018  09         3    42 2018-09-07
#>  16 2018  10         1    43 2018-10-12
#>  17 2018  11         2    45 2018-11-30
#>  18 2019  01         1    46 2019-01-17
#>  19 2019  02        11    57 2019-02-21
#>  20 2019  03        14    71 2019-03-22
#>  21 2019  04         9    80 2019-04-30
#>  22 2019  05         7    87 2019-05-28
#>  23 2019  06         5    92 2019-06-30
#>  24 2019  07         5    97 2019-07-29
#>  25 2019  08         3   100 2019-08-26
#>  26 2019  09        11   111 2019-09-27
#>  27 2019  10         4   115 2019-10-31
#>  28 2019  11         5   120 2019-11-26
#>  29 2019  12         2   122 2019-12-11
#>  30 2020  01         6   128 2020-01-29
#>  31 2020  02         6   134 2020-02-29
#>  32 2020  03         8   142 2020-03-25
#>  33 2020  04         6   148 2020-04-20
#>  34 2020  05        10   158 2020-05-29
#>  35 2020  06         2   160 2020-06-19
#>  36 2020  07        10   170 2020-07-29
#>  37 2020  08        13   183 2020-08-31
#>  38 2020  09         9   192 2020-09-21
#>  39 2020  10         6   198 2020-10-30
#>  40 2020  11         8   206 2020-11-19
#>  41 2020  12         3   209 2020-12-22
#>  42 2021  01         9   218 2021-01-25
#>  43 2021  02         8   226 2021-02-26
#>  44 2021  03         8   234 2021-03-25
#>  45 2021  04         5   239 2021-04-27
#>  46 2021  05         7   246 2021-05-17
#>  47 2021  06         8   254 2021-06-30
#>  48 2021  07         6   260 2021-07-27
#>  49 2021  08        11   271 2021-08-30
#>  50 2021  09        15   286 2021-09-30
#>  51 2021  10        13   299 2021-10-27
#>  52 2021  11         8   307 2021-11-25
#>  53 2021  12        11   318 2021-12-18
#>  54 2022  01        11   329 2022-01-30
#>  55 2022  02        10   339 2022-02-26
#>  56 2022  03        15   354 2022-03-31
#>  57 2022  04         7   361 2022-04-27
#>  58 2022  05         9   370 2022-05-27
#>  59 2022  06         9   379 2022-06-25
#>  60 2022  07         8   387 2022-07-27
#>  61 2022  08         8   395 2022-08-31
#>  62 2022  09        25   420 2022-09-24
#>  63 2022  10        15   435 2022-10-26
#>  64 2022  11        13   448 2022-11-29
#>  65 2022  12         4   452 2022-12-21
#>  66 2023  01        14   466 2023-01-31
#>  67 2023  02         9   475 2023-02-24
#>  68 2023  03        11   486 2023-03-24
#>  69 2023  04        12   498 2023-04-26
#>  70 2023  05         8   506 2023-05-10
#>  71 2023  06        13   519 2023-06-30
#>  72 2023  07        14   533 2023-07-29
#>  73 2023  08        17   550 2023-08-29
#>  74 2023  09        34   584 2023-09-30
#>  75 2023  10        12   596 2023-10-24
#>  76 2023  11        16   612 2023-11-29
#>  77 2023  12         8   620 2023-12-22
#>  78 2024  01        21   641 2024-01-31
#>  79 2024  02        21   662 2024-02-29
#>  80 2024  03        11   673 2024-03-27
#>  81 2024  04        23   696 2024-04-24
#>  82 2024  05        13   709 2024-05-31
#>  83 2024  06        16   725 2024-06-28
#>  84 2024  07        22   747 2024-07-31
#>  85 2024  08        16   763 2024-08-31
#>  86 2024  09        42   805 2024-09-28
#>  87 2024  10        25   830 2024-10-31
#>  88 2024  11        13   843 2024-11-28
#>  89 2024  12        27   870 2024-12-28
#>  90 2025  01        39   909 2025-01-31
#>  91 2025  02        40   949 2025-02-28
#>  92 2025  03        35   984 2025-03-25
#>  93 2025  04        45  1029 2025-04-30
#>  94 2025  05        20  1049 2025-05-28
#>  95 2025  06        26  1075 2025-06-30
#>  96 2025  07        56  1131 2025-07-30
#>  97 2025  08        42  1173 2025-08-29
#>  98 2025  09        50  1223 2025-09-30
#>  99 2025  10        51  1274 2025-10-30
#> 100 2025  11        31  1305 2025-11-27
#> 101 2025  12        12  1317 2025-12-18


if (require("ggplot2", quietly = TRUE)) {
  gg <- ggplot(signups, aes(date, total)) + geom_line(linewidth = 2.0)
  gg <- gg + xlab("") + ylab("Number of users")
  gg <- gg + theme(text = element_text(size = 20))
  print(gg)
}