The number of Wynton users over time

users_over_time(file = NULL, since = "2017-01-01")

Arguments

file

A file with a single column of signup dates, or NULL. If NULL, then the Wynton LDAP server is queried.

since

Drop signup dates prior to this date.

Value

A tibble::tibble with columns date and total, total the cumulative sum based on date occurances.

Examples

library(dplyr)
#> 
#> Attaching package: ‘dplyr’
#> The following objects are masked from ‘package:stats’:
#> 
#>     filter, lag
#> The following objects are masked from ‘package:base’:
#> 
#>     intersect, setdiff, setequal, union

pathname <- system.file("exdata", "ldap_wynton_dates.txt", package = "wyntonquery")

signups <- users_over_time(pathname)
print(head(signups))
#> # A tibble: 6 × 2
#>   date       total
#>   <date>     <int>
#> 1 2017-02-21    14
#> 2 2017-04-25    15
#> 3 2017-05-23    16
#> 4 2017-07-04    17
#> 5 2017-08-10    18
#> 6 2017-08-11    19
print(tail(signups))
#> # A tibble: 6 × 2
#>   date       total
#>   <date>     <int>
#> 1 2025-07-25  1273
#> 2 2025-07-26  1274
#> 3 2025-07-29  1275
#> 4 2025-07-30  1276
#> 5 2025-07-30  1277
#> 6 2025-07-30  1278

## Summarize by year and month
signups <- mutate(signups, year = format(date, "%Y"))

## Signups per calendar year
signups <- mutate(signups, month = format(date, "%m"))
signups <- group_by(signups, year)
signups_per_year <- count(signups, name = "change")
signups_end_of_year <- filter(signups, date == max(date), total == max(total))
signups_per_year <- left_join(signups_per_year, signups_end_of_year)
#> Joining with `by = join_by(year)`
signups_per_year <- select(signups_per_year, year, change, total, per = date)
print(signups_per_year, n = Inf)
#> # A tibble: 9 × 4
#> # Groups:   year [9]
#>   year  change total per       
#>   <chr>  <int> <int> <date>    
#> 1 2017      17    30 2017-12-05
#> 2 2018      20    50 2018-11-30
#> 3 2019      87   137 2019-12-18
#> 4 2020      98   235 2020-12-22
#> 5 2021     118   353 2021-12-18
#> 6 2022     158   511 2022-12-21
#> 7 2023     180   691 2023-12-27
#> 8 2024     310  1001 2024-12-28
#> 9 2025     277  1278 2025-07-30

## Signups per calendar month
signups <- group_by(signups, year, month)
signups_per_month <- count(signups, name = "change")
signups_end_of_month <- filter(signups, date == max(date), total == max(total))
signups_per_month <- left_join(signups_per_month, signups_end_of_month)
#> Joining with `by = join_by(year, month)`
signups_per_month <- select(signups_per_month, year, month, change, total, per = date)
print(signups_per_month, n = Inf)
#> # A tibble: 98 × 5
#> # Groups:   year, month [98]
#>    year  month change total per       
#>    <chr> <chr>  <int> <int> <date>    
#>  1 2017  02         1    14 2017-02-21
#>  2 2017  04         1    15 2017-04-25
#>  3 2017  05         1    16 2017-05-23
#>  4 2017  07         1    17 2017-07-04
#>  5 2017  08         2    19 2017-08-11
#>  6 2017  09         2    21 2017-09-22
#>  7 2017  10         2    23 2017-10-24
#>  8 2017  11         6    29 2017-11-21
#>  9 2017  12         1    30 2017-12-05
#> 10 2018  01         1    31 2018-01-16
#> 11 2018  02         4    35 2018-02-26
#> 12 2018  03         2    37 2018-03-29
#> 13 2018  05         1    38 2018-05-14
#> 14 2018  06         1    39 2018-06-12
#> 15 2018  07         1    40 2018-07-18
#> 16 2018  08         4    44 2018-08-30
#> 17 2018  09         3    47 2018-09-07
#> 18 2018  10         1    48 2018-10-12
#> 19 2018  11         2    50 2018-11-30
#> 20 2019  01         1    51 2019-01-17
#> 21 2019  02        11    62 2019-02-21
#> 22 2019  03        15    77 2019-03-22
#> 23 2019  04         9    86 2019-04-30
#> 24 2019  05         6    92 2019-05-20
#> 25 2019  06         6    98 2019-06-30
#> 26 2019  07         7   105 2019-07-29
#> 27 2019  08         4   109 2019-08-31
#> 28 2019  09        16   125 2019-09-28
#> 29 2019  10         4   129 2019-10-31
#> 30 2019  11         4   133 2019-11-26
#> 31 2019  12         4   137 2019-12-18
#> 32 2020  01         6   143 2020-01-29
#> 33 2020  02         6   149 2020-02-29
#> 34 2020  03         8   157 2020-03-25
#> 35 2020  04         6   163 2020-04-20
#> 36 2020  05        10   173 2020-05-29
#> 37 2020  06         2   175 2020-06-19
#> 38 2020  07        11   186 2020-07-28
#> 39 2020  08        15   201 2020-08-31
#> 40 2020  09        10   211 2020-09-21
#> 41 2020  10        10   221 2020-10-30
#> 42 2020  11         9   230 2020-11-19
#> 43 2020  12         5   235 2020-12-22
#> 44 2021  01        10   245 2021-01-28
#> 45 2021  02        10   255 2021-02-26
#> 46 2021  03        10   265 2021-03-25
#> 47 2021  04         6   271 2021-04-27
#> 48 2021  05         7   278 2021-05-21
#> 49 2021  06         8   286 2021-06-30
#> 50 2021  07         3   289 2021-07-27
#> 51 2021  08        12   301 2021-08-30
#> 52 2021  09        17   318 2021-09-30
#> 53 2021  10        14   332 2021-10-27
#> 54 2021  11        12   344 2021-11-25
#> 55 2021  12         9   353 2021-12-18
#> 56 2022  01        12   365 2022-01-30
#> 57 2022  02        11   376 2022-02-26
#> 58 2022  03        17   393 2022-03-31
#> 59 2022  04         9   402 2022-04-22
#> 60 2022  05         9   411 2022-05-27
#> 61 2022  06         9   420 2022-06-25
#> 62 2022  07         9   429 2022-07-27
#> 63 2022  08        16   445 2022-08-31
#> 64 2022  09        31   476 2022-09-24
#> 65 2022  10        17   493 2022-10-26
#> 66 2022  11        13   506 2022-11-29
#> 67 2022  12         5   511 2022-12-21
#> 68 2023  01        14   525 2023-01-31
#> 69 2023  02        11   536 2023-02-28
#> 70 2023  03        10   546 2023-03-24
#> 71 2023  04        12   558 2023-04-26
#> 72 2023  05         8   566 2023-05-10
#> 73 2023  06        15   581 2023-06-30
#> 74 2023  07        18   599 2023-07-29
#> 75 2023  08        19   618 2023-08-29
#> 76 2023  09        33   651 2023-09-30
#> 77 2023  10        13   664 2023-10-27
#> 78 2023  11        18   682 2023-11-29
#> 79 2023  12         9   691 2023-12-27
#> 80 2024  01        21   712 2024-01-31
#> 81 2024  02        21   733 2024-02-29
#> 82 2024  03        12   745 2024-03-27
#> 83 2024  04        21   766 2024-04-23
#> 84 2024  05        13   779 2024-05-31
#> 85 2024  06        14   793 2024-06-28
#> 86 2024  07        30   823 2024-07-31
#> 87 2024  08        32   855 2024-08-31
#> 88 2024  09        57   912 2024-09-28
#> 89 2024  10        37   949 2024-10-31
#> 90 2024  11        23   972 2024-11-28
#> 91 2024  12        29  1001 2024-12-28
#> 92 2025  01        41  1042 2025-01-31
#> 93 2025  02        41  1083 2025-02-28
#> 94 2025  03        36  1119 2025-03-25
#> 95 2025  04        48  1167 2025-04-30
#> 96 2025  05        21  1188 2025-05-28
#> 97 2025  06        30  1218 2025-06-30
#> 98 2025  07        60  1278 2025-07-30


if (require("ggplot2", quietly = TRUE)) {
  gg <- ggplot(signups, aes(date, total)) + geom_line(linewidth = 2.0)
  gg <- gg + xlab("") + ylab("Number of users")
  gg <- gg + theme(text = element_text(size = 20))
  print(gg)
}