The number of Wynton users over time

users_over_time(file = NULL, since = "2017-01-01")

Arguments

file

A file with a single column of signup dates, or NULL. If NULL, then the Wynton LDAP server is queried.

since

Drop signup dates prior to this date.

Value

A tibble::tibble with columns date and total, total the cumulative sum based on date occurances.

Examples

library(dplyr)
#> 
#> Attaching package: ‘dplyr’
#> The following objects are masked from ‘package:stats’:
#> 
#>     filter, lag
#> The following objects are masked from ‘package:base’:
#> 
#>     intersect, setdiff, setequal, union

pathname <- system.file("exdata", "ldap_wynton_dates.txt", package = "wyntonquery")

signups <- users_over_time(pathname)
print(head(signups))
#> # A tibble: 6 × 2
#>   date       total
#>   <date>     <int>
#> 1 2017-02-21    11
#> 2 2017-04-25    12
#> 3 2017-05-23    13
#> 4 2017-07-04    14
#> 5 2017-08-10    15
#> 6 2017-08-11    16
print(tail(signups))
#> # A tibble: 6 × 2
#>   date       total
#>   <date>     <int>
#> 1 2026-01-24   984
#> 2 2026-01-29   985
#> 3 2026-01-29   986
#> 4 2026-01-29   987
#> 5 2026-01-29   988
#> 6 2026-01-30   989

## Summarize by year and month
signups <- mutate(signups, year = format(date, "%Y"))

## Signups per calendar year
signups <- mutate(signups, month = format(date, "%m"))
signups <- group_by(signups, year)
signups_per_year <- count(signups, name = "change")
signups_end_of_year <- filter(signups, date == max(date), total == max(total))
signups_per_year <- left_join(signups_per_year, signups_end_of_year)
#> Joining with `by = join_by(year)`
signups_per_year <- select(signups_per_year, year, change, total, per = date)
print(signups_per_year, n = Inf)
#> # A tibble: 10 × 4
#> # Groups:   year [10]
#>    year  change total per       
#>    <chr>  <int> <int> <date>    
#>  1 2017      16    26 2017-12-12
#>  2 2018      16    42 2018-11-30
#>  3 2019      60   102 2019-12-11
#>  4 2020      71   173 2020-12-22
#>  5 2021      84   257 2021-12-18
#>  6 2022     101   358 2022-12-21
#>  7 2023     114   472 2023-12-22
#>  8 2024     192   664 2024-12-28
#>  9 2025     292   956 2025-12-23
#> 10 2026      33   989 2026-01-30

## Signups per calendar month
signups <- group_by(signups, year, month)
signups_per_month <- count(signups, name = "change")
signups_end_of_month <- filter(signups, date == max(date), total == max(total))
signups_per_month <- left_join(signups_per_month, signups_end_of_month)
#> Joining with `by = join_by(year, month)`
signups_per_month <- select(signups_per_month, year, month, change, total, per = date)
print(signups_per_month, n = Inf)
#> # A tibble: 102 × 5
#> # Groups:   year, month [102]
#>     year  month change total per       
#>     <chr> <chr>  <int> <int> <date>    
#>   1 2017  02         1    11 2017-02-21
#>   2 2017  04         1    12 2017-04-25
#>   3 2017  05         1    13 2017-05-23
#>   4 2017  07         1    14 2017-07-04
#>   5 2017  08         2    16 2017-08-11
#>   6 2017  09         1    17 2017-09-20
#>   7 2017  10         2    19 2017-10-27
#>   8 2017  11         5    24 2017-11-21
#>   9 2017  12         2    26 2017-12-12
#>  10 2018  01         1    27 2018-01-26
#>  11 2018  02         2    29 2018-02-26
#>  12 2018  03         2    31 2018-03-29
#>  13 2018  05         2    33 2018-05-14
#>  14 2018  07         1    34 2018-07-18
#>  15 2018  08         2    36 2018-08-24
#>  16 2018  09         3    39 2018-09-07
#>  17 2018  10         1    40 2018-10-12
#>  18 2018  11         2    42 2018-11-30
#>  19 2019  02         9    51 2019-02-21
#>  20 2019  03        15    66 2019-03-22
#>  21 2019  04         9    75 2019-04-30
#>  22 2019  05         6    81 2019-05-28
#>  23 2019  06         4    85 2019-06-30
#>  24 2019  07         1    86 2019-07-29
#>  25 2019  08         3    89 2019-08-26
#>  26 2019  09         2    91 2019-09-19
#>  27 2019  10         4    95 2019-10-31
#>  28 2019  11         5   100 2019-11-26
#>  29 2019  12         2   102 2019-12-11
#>  30 2020  01         5   107 2020-01-29
#>  31 2020  02         5   112 2020-02-29
#>  32 2020  03         6   118 2020-03-25
#>  33 2020  04         5   123 2020-04-20
#>  34 2020  05         7   130 2020-05-29
#>  35 2020  06         1   131 2020-06-02
#>  36 2020  07        10   141 2020-07-28
#>  37 2020  08        12   153 2020-08-31
#>  38 2020  09         8   161 2020-09-21
#>  39 2020  10         3   164 2020-10-30
#>  40 2020  11         7   171 2020-11-19
#>  41 2020  12         2   173 2020-12-22
#>  42 2021  01         6   179 2021-01-25
#>  43 2021  02         6   185 2021-02-26
#>  44 2021  03         5   190 2021-03-25
#>  45 2021  04         4   194 2021-04-27
#>  46 2021  05         6   200 2021-05-21
#>  47 2021  06         6   206 2021-06-30
#>  48 2021  07         4   210 2021-07-27
#>  49 2021  08         9   219 2021-08-30
#>  50 2021  09        12   231 2021-09-30
#>  51 2021  10        12   243 2021-10-27
#>  52 2021  11         6   249 2021-11-25
#>  53 2021  12         8   257 2021-12-18
#>  54 2022  01         8   265 2022-01-30
#>  55 2022  02         8   273 2022-02-26
#>  56 2022  03         9   282 2022-03-31
#>  57 2022  04         4   286 2022-04-27
#>  58 2022  05         7   293 2022-05-27
#>  59 2022  06         4   297 2022-06-25
#>  60 2022  07         8   305 2022-07-27
#>  61 2022  08         7   312 2022-08-31
#>  62 2022  09        21   333 2022-09-24
#>  63 2022  10        15   348 2022-10-26
#>  64 2022  11         8   356 2022-11-23
#>  65 2022  12         2   358 2022-12-21
#>  66 2023  01        10   368 2023-01-31
#>  67 2023  02         6   374 2023-02-24
#>  68 2023  03         7   381 2023-03-21
#>  69 2023  04        10   391 2023-04-26
#>  70 2023  05         6   397 2023-05-10
#>  71 2023  06        10   407 2023-06-30
#>  72 2023  07         7   414 2023-07-29
#>  73 2023  08        14   428 2023-08-29
#>  74 2023  09        23   451 2023-09-29
#>  75 2023  10        10   461 2023-10-24
#>  76 2023  11         9   470 2023-11-29
#>  77 2023  12         2   472 2023-12-22
#>  78 2024  01        15   487 2024-01-31
#>  79 2024  02        16   503 2024-02-29
#>  80 2024  03         8   511 2024-03-27
#>  81 2024  04        21   532 2024-04-24
#>  82 2024  05        11   543 2024-05-31
#>  83 2024  06        13   556 2024-06-28
#>  84 2024  07        17   573 2024-07-27
#>  85 2024  08        14   587 2024-08-31
#>  86 2024  09        39   626 2024-09-28
#>  87 2024  10        15   641 2024-10-31
#>  88 2024  11         6   647 2024-11-22
#>  89 2024  12        17   664 2024-12-28
#>  90 2025  01        26   690 2025-01-31
#>  91 2025  02        22   712 2025-02-28
#>  92 2025  03        16   728 2025-03-25
#>  93 2025  04        17   745 2025-04-30
#>  94 2025  05        19   764 2025-05-28
#>  95 2025  06        20   784 2025-06-30
#>  96 2025  07        30   814 2025-07-30
#>  97 2025  08        27   841 2025-08-29
#>  98 2025  09        38   879 2025-09-30
#>  99 2025  10        41   920 2025-10-30
#> 100 2025  11        22   942 2025-11-27
#> 101 2025  12        14   956 2025-12-23
#> 102 2026  01        33   989 2026-01-30


if (require("ggplot2", quietly = TRUE)) {
  gg <- ggplot(signups, aes(date, total)) + geom_line(linewidth = 2.0)
  gg <- gg + xlab("") + ylab("Number of users")
  gg <- gg + theme(text = element_text(size = 20))
  print(gg)
}