The number of Wynton users over time

users_over_time(file = NULL, since = "2017-01-01")

Arguments

file

A file with a single column of signup dates, or NULL. If NULL, then the Wynton LDAP server is queried.

since

Drop signup dates prior to this date.

Value

A tibble::tibble with columns date and total, total the cumulative sum based on date occurances.

Examples

library(dplyr)
#> 
#> Attaching package: ‘dplyr’
#> The following objects are masked from ‘package:stats’:
#> 
#>     filter, lag
#> The following objects are masked from ‘package:base’:
#> 
#>     intersect, setdiff, setequal, union

pathname <- system.file("exdata", "ldap_wynton_dates.txt", package = "wyntonquery")

signups <- users_over_time(pathname)
print(head(signups))
#> # A tibble: 6 × 2
#>   date       total
#>   <date>     <int>
#> 1 2017-02-21    12
#> 2 2017-04-25    13
#> 3 2017-05-23    14
#> 4 2017-07-04    15
#> 5 2017-08-10    16
#> 6 2017-08-11    17
print(tail(signups))
#> # A tibble: 6 × 2
#>   date       total
#>   <date>     <int>
#> 1 2025-09-13  1293
#> 2 2025-09-14  1294
#> 3 2025-09-16  1295
#> 4 2025-09-16  1296
#> 5 2025-09-17  1297
#> 6 2025-09-17  1298

## Summarize by year and month
signups <- mutate(signups, year = format(date, "%Y"))

## Signups per calendar year
signups <- mutate(signups, month = format(date, "%m"))
signups <- group_by(signups, year)
signups_per_year <- count(signups, name = "change")
signups_end_of_year <- filter(signups, date == max(date), total == max(total))
signups_per_year <- left_join(signups_per_year, signups_end_of_year)
#> Joining with `by = join_by(year)`
signups_per_year <- select(signups_per_year, year, change, total, per = date)
print(signups_per_year, n = Inf)
#> # A tibble: 9 × 4
#> # Groups:   year [9]
#>   year  change total per       
#>   <chr>  <int> <int> <date>    
#> 1 2017      17    28 2017-12-05
#> 2 2018      20    48 2018-11-30
#> 3 2019      83   131 2019-12-18
#> 4 2020      96   227 2020-12-22
#> 5 2021     114   341 2021-12-18
#> 6 2022     150   491 2022-12-21
#> 7 2023     177   668 2023-12-27
#> 8 2024     292   960 2024-12-28
#> 9 2025     338  1298 2025-09-17

## Signups per calendar month
signups <- group_by(signups, year, month)
signups_per_month <- count(signups, name = "change")
signups_end_of_month <- filter(signups, date == max(date), total == max(total))
signups_per_month <- left_join(signups_per_month, signups_end_of_month)
#> Joining with `by = join_by(year, month)`
signups_per_month <- select(signups_per_month, year, month, change, total, per = date)
print(signups_per_month, n = Inf)
#> # A tibble: 99 × 5
#> # Groups:   year, month [99]
#>    year  month change total per       
#>    <chr> <chr>  <int> <int> <date>    
#>  1 2017  02         1    12 2017-02-21
#>  2 2017  04         1    13 2017-04-25
#>  3 2017  05         1    14 2017-05-23
#>  4 2017  07         1    15 2017-07-04
#>  5 2017  08         2    17 2017-08-11
#>  6 2017  09         2    19 2017-09-22
#>  7 2017  10         2    21 2017-10-24
#>  8 2017  11         6    27 2017-11-21
#>  9 2017  12         1    28 2017-12-05
#> 10 2018  01         2    30 2018-01-26
#> 11 2018  02         3    33 2018-02-26
#> 12 2018  03         2    35 2018-03-29
#> 13 2018  05         2    37 2018-05-14
#> 14 2018  07         1    38 2018-07-18
#> 15 2018  08         4    42 2018-08-30
#> 16 2018  09         3    45 2018-09-07
#> 17 2018  10         1    46 2018-10-12
#> 18 2018  11         2    48 2018-11-30
#> 19 2019  01         1    49 2019-01-17
#> 20 2019  02        11    60 2019-02-21
#> 21 2019  03        14    74 2019-03-22
#> 22 2019  04        10    84 2019-04-30
#> 23 2019  05         7    91 2019-05-28
#> 24 2019  06         6    97 2019-06-30
#> 25 2019  07         5   102 2019-07-29
#> 26 2019  08         3   105 2019-08-26
#> 27 2019  09        13   118 2019-09-28
#> 28 2019  10         5   123 2019-10-31
#> 29 2019  11         4   127 2019-11-26
#> 30 2019  12         4   131 2019-12-18
#> 31 2020  01         6   137 2020-01-29
#> 32 2020  02         6   143 2020-02-29
#> 33 2020  03         8   151 2020-03-25
#> 34 2020  04         6   157 2020-04-20
#> 35 2020  05        11   168 2020-05-29
#> 36 2020  06         2   170 2020-06-19
#> 37 2020  07        11   181 2020-07-29
#> 38 2020  08        15   196 2020-08-31
#> 39 2020  09        10   206 2020-09-21
#> 40 2020  10         8   214 2020-10-30
#> 41 2020  11         9   223 2020-11-19
#> 42 2020  12         4   227 2020-12-22
#> 43 2021  01         9   236 2021-01-28
#> 44 2021  02         9   245 2021-02-26
#> 45 2021  03         9   254 2021-03-25
#> 46 2021  04         6   260 2021-04-27
#> 47 2021  05         7   267 2021-05-21
#> 48 2021  06         8   275 2021-06-30
#> 49 2021  07         5   280 2021-07-27
#> 50 2021  08        11   291 2021-08-30
#> 51 2021  09        16   307 2021-09-30
#> 52 2021  10        14   321 2021-10-27
#> 53 2021  11        11   332 2021-11-25
#> 54 2021  12         9   341 2021-12-18
#> 55 2022  01        11   352 2022-01-30
#> 56 2022  02        10   362 2022-02-26
#> 57 2022  03        19   381 2022-03-31
#> 58 2022  04         8   389 2022-04-27
#> 59 2022  05        10   399 2022-05-27
#> 60 2022  06         8   407 2022-06-25
#> 61 2022  07         8   415 2022-07-27
#> 62 2022  08        14   429 2022-08-31
#> 63 2022  09        27   456 2022-09-24
#> 64 2022  10        17   473 2022-10-26
#> 65 2022  11        14   487 2022-11-29
#> 66 2022  12         4   491 2022-12-21
#> 67 2023  01        14   505 2023-01-31
#> 68 2023  02        10   515 2023-02-25
#> 69 2023  03        10   525 2023-03-24
#> 70 2023  04        13   538 2023-04-26
#> 71 2023  05         9   547 2023-05-10
#> 72 2023  06        13   560 2023-06-30
#> 73 2023  07        16   576 2023-07-29
#> 74 2023  08        19   595 2023-08-29
#> 75 2023  09        33   628 2023-09-30
#> 76 2023  10        13   641 2023-10-24
#> 77 2023  11        18   659 2023-11-29
#> 78 2023  12         9   668 2023-12-27
#> 79 2024  01        22   690 2024-01-31
#> 80 2024  02        23   713 2024-02-29
#> 81 2024  03        12   725 2024-03-27
#> 82 2024  04        21   746 2024-04-23
#> 83 2024  05        13   759 2024-05-31
#> 84 2024  06        15   774 2024-06-28
#> 85 2024  07        25   799 2024-07-31
#> 86 2024  08        26   825 2024-08-31
#> 87 2024  09        55   880 2024-09-28
#> 88 2024  10        32   912 2024-10-31
#> 89 2024  11        20   932 2024-11-28
#> 90 2024  12        28   960 2024-12-28
#> 91 2025  01        40  1000 2025-01-31
#> 92 2025  02        42  1042 2025-02-28
#> 93 2025  03        36  1078 2025-03-25
#> 94 2025  04        46  1124 2025-04-30
#> 95 2025  05        19  1143 2025-05-28
#> 96 2025  06        27  1170 2025-06-30
#> 97 2025  07        55  1225 2025-07-30
#> 98 2025  08        45  1270 2025-08-29
#> 99 2025  09        28  1298 2025-09-17


if (require("ggplot2", quietly = TRUE)) {
  gg <- ggplot(signups, aes(date, total)) + geom_line(linewidth = 2.0)
  gg <- gg + xlab("") + ylab("Number of users")
  gg <- gg + theme(text = element_text(size = 20))
  print(gg)
}