The number of Wynton users over time

users_over_time(file = NULL, since = "2017-01-01")

Arguments

file

A file with a single column of signup dates, or NULL. If NULL, then the Wynton LDAP server is queried.

since

Drop signup dates prior to this date.

Value

A tibble::tibble with columns date and total, total the cumulative sum based on date occurances.

Examples

library(dplyr)
#> 
#> Attaching package: ‘dplyr’
#> The following objects are masked from ‘package:stats’:
#> 
#>     filter, lag
#> The following objects are masked from ‘package:base’:
#> 
#>     intersect, setdiff, setequal, union

pathname <- system.file("exdata", "ldap_wynton_dates.txt", package = "wyntonquery")

signups <- users_over_time(pathname)
print(head(signups))
#> # A tibble: 6 × 2
#>   date       total
#>   <date>     <int>
#> 1 2017-02-21    12
#> 2 2017-04-25    13
#> 3 2017-05-23    14
#> 4 2017-07-04    15
#> 5 2017-08-10    16
#> 6 2017-08-11    17
print(tail(signups))
#> # A tibble: 6 × 2
#>   date       total
#>   <date>     <int>
#> 1 2025-11-07  1304
#> 2 2025-11-08  1305
#> 3 2025-11-08  1306
#> 4 2025-11-11  1307
#> 5 2025-11-11  1308
#> 6 2025-11-14  1309

## Summarize by year and month
signups <- mutate(signups, year = format(date, "%Y"))

## Signups per calendar year
signups <- mutate(signups, month = format(date, "%m"))
signups <- group_by(signups, year)
signups_per_year <- count(signups, name = "change")
signups_end_of_year <- filter(signups, date == max(date), total == max(total))
signups_per_year <- left_join(signups_per_year, signups_end_of_year)
#> Joining with `by = join_by(year)`
signups_per_year <- select(signups_per_year, year, change, total, per = date)
print(signups_per_year, n = Inf)
#> # A tibble: 9 × 4
#> # Groups:   year [9]
#>   year  change total per       
#>   <chr>  <int> <int> <date>    
#> 1 2017      17    28 2017-12-05
#> 2 2018      20    48 2018-11-30
#> 3 2019      80   128 2019-12-18
#> 4 2020      86   214 2020-12-22
#> 5 2021     108   322 2021-12-18
#> 6 2022     140   462 2022-12-21
#> 7 2023     169   631 2023-12-22
#> 8 2024     258   889 2024-12-28
#> 9 2025     420  1309 2025-11-14

## Signups per calendar month
signups <- group_by(signups, year, month)
signups_per_month <- count(signups, name = "change")
signups_end_of_month <- filter(signups, date == max(date), total == max(total))
signups_per_month <- left_join(signups_per_month, signups_end_of_month)
#> Joining with `by = join_by(year, month)`
signups_per_month <- select(signups_per_month, year, month, change, total, per = date)
print(signups_per_month, n = Inf)
#> # A tibble: 101 × 5
#> # Groups:   year, month [101]
#>     year  month change total per       
#>     <chr> <chr>  <int> <int> <date>    
#>   1 2017  02         1    12 2017-02-21
#>   2 2017  04         1    13 2017-04-25
#>   3 2017  05         1    14 2017-05-23
#>   4 2017  07         1    15 2017-07-04
#>   5 2017  08         2    17 2017-08-11
#>   6 2017  09         1    18 2017-09-20
#>   7 2017  10         3    21 2017-10-27
#>   8 2017  11         6    27 2017-11-21
#>   9 2017  12         1    28 2017-12-05
#>  10 2018  01         2    30 2018-01-26
#>  11 2018  02         4    34 2018-02-26
#>  12 2018  03         2    36 2018-03-29
#>  13 2018  05         2    38 2018-05-14
#>  14 2018  07         1    39 2018-07-18
#>  15 2018  08         3    42 2018-08-24
#>  16 2018  09         3    45 2018-09-07
#>  17 2018  10         1    46 2018-10-12
#>  18 2018  11         2    48 2018-11-30
#>  19 2019  01         1    49 2019-01-17
#>  20 2019  02        11    60 2019-02-21
#>  21 2019  03        14    74 2019-03-22
#>  22 2019  04         9    83 2019-04-30
#>  23 2019  05         7    90 2019-05-28
#>  24 2019  06         7    97 2019-06-30
#>  25 2019  07         5   102 2019-07-29
#>  26 2019  08         3   105 2019-08-26
#>  27 2019  09        11   116 2019-09-27
#>  28 2019  10         4   120 2019-10-31
#>  29 2019  11         5   125 2019-11-26
#>  30 2019  12         3   128 2019-12-18
#>  31 2020  01         6   134 2020-01-29
#>  32 2020  02         6   140 2020-02-29
#>  33 2020  03         8   148 2020-03-25
#>  34 2020  04         5   153 2020-04-20
#>  35 2020  05        10   163 2020-05-29
#>  36 2020  06         2   165 2020-06-19
#>  37 2020  07        10   175 2020-07-29
#>  38 2020  08        13   188 2020-08-31
#>  39 2020  09         9   197 2020-09-21
#>  40 2020  10         6   203 2020-10-30
#>  41 2020  11         8   211 2020-11-19
#>  42 2020  12         3   214 2020-12-22
#>  43 2021  01        10   224 2021-01-28
#>  44 2021  02         8   232 2021-02-26
#>  45 2021  03         8   240 2021-03-25
#>  46 2021  04         5   245 2021-04-27
#>  47 2021  05         7   252 2021-05-21
#>  48 2021  06         9   261 2021-06-30
#>  49 2021  07         5   266 2021-07-27
#>  50 2021  08        11   277 2021-08-30
#>  51 2021  09        13   290 2021-09-30
#>  52 2021  10        14   304 2021-10-27
#>  53 2021  11         8   312 2021-11-25
#>  54 2021  12        10   322 2021-12-18
#>  55 2022  01        11   333 2022-01-30
#>  56 2022  02        10   343 2022-02-26
#>  57 2022  03        16   359 2022-03-31
#>  58 2022  04         8   367 2022-04-27
#>  59 2022  05        10   377 2022-05-27
#>  60 2022  06         9   386 2022-06-25
#>  61 2022  07         8   394 2022-07-27
#>  62 2022  08        11   405 2022-08-31
#>  63 2022  09        26   431 2022-09-24
#>  64 2022  10        14   445 2022-10-26
#>  65 2022  11        13   458 2022-11-29
#>  66 2022  12         4   462 2022-12-21
#>  67 2023  01        14   476 2023-01-31
#>  68 2023  02        10   486 2023-02-25
#>  69 2023  03        11   497 2023-03-24
#>  70 2023  04        13   510 2023-04-26
#>  71 2023  05         8   518 2023-05-10
#>  72 2023  06        13   531 2023-06-30
#>  73 2023  07        14   545 2023-07-29
#>  74 2023  08        17   562 2023-08-29
#>  75 2023  09        31   593 2023-09-30
#>  76 2023  10        12   605 2023-10-24
#>  77 2023  11        18   623 2023-11-29
#>  78 2023  12         8   631 2023-12-22
#>  79 2024  01        22   653 2024-01-31
#>  80 2024  02        23   676 2024-02-29
#>  81 2024  03        12   688 2024-03-27
#>  82 2024  04        23   711 2024-04-24
#>  83 2024  05        12   723 2024-05-31
#>  84 2024  06        16   739 2024-06-28
#>  85 2024  07        22   761 2024-07-31
#>  86 2024  08        16   777 2024-08-31
#>  87 2024  09        41   818 2024-09-28
#>  88 2024  10        27   845 2024-10-31
#>  89 2024  11        16   861 2024-11-28
#>  90 2024  12        28   889 2024-12-28
#>  91 2025  01        40   929 2025-01-31
#>  92 2025  02        41   970 2025-02-28
#>  93 2025  03        35  1005 2025-03-25
#>  94 2025  04        47  1052 2025-04-30
#>  95 2025  05        20  1072 2025-05-28
#>  96 2025  06        27  1099 2025-06-30
#>  97 2025  07        55  1154 2025-07-30
#>  98 2025  08        44  1198 2025-08-29
#>  99 2025  09        50  1248 2025-09-30
#> 100 2025  10        51  1299 2025-10-30
#> 101 2025  11        10  1309 2025-11-14


if (require("ggplot2", quietly = TRUE)) {
  gg <- ggplot(signups, aes(date, total)) + geom_line(linewidth = 2.0)
  gg <- gg + xlab("") + ylab("Number of users")
  gg <- gg + theme(text = element_text(size = 20))
  print(gg)
}