The number of Wynton users over time

users_over_time(file = NULL, since = "2017-01-01")

Arguments

file

A file with a single column of signup dates, or NULL. If NULL, then the Wynton LDAP server is queried.

since

Drop signup dates prior to this date.

Value

A tibble::tibble with columns date and total, total the cumulative sum based on date occurances.

Examples

library(dplyr)
#> 
#> Attaching package: ‘dplyr’
#> The following objects are masked from ‘package:stats’:
#> 
#>     filter, lag
#> The following objects are masked from ‘package:base’:
#> 
#>     intersect, setdiff, setequal, union

pathname <- system.file("exdata", "ldap_wynton_dates.txt", package = "wyntonquery")

signups <- users_over_time(pathname)
print(head(signups))
#> # A tibble: 6 × 2
#>   date       total
#>   <date>     <int>
#> 1 2017-02-21    12
#> 2 2017-04-25    13
#> 3 2017-05-23    14
#> 4 2017-07-04    15
#> 5 2017-08-10    16
#> 6 2017-08-11    17
print(tail(signups))
#> # A tibble: 6 × 2
#>   date       total
#>   <date>     <int>
#> 1 2026-01-17  1303
#> 2 2026-01-17  1304
#> 3 2026-01-17  1305
#> 4 2026-01-17  1306
#> 5 2026-01-17  1307
#> 6 2026-01-17  1308

## Summarize by year and month
signups <- mutate(signups, year = format(date, "%Y"))

## Signups per calendar year
signups <- mutate(signups, month = format(date, "%m"))
signups <- group_by(signups, year)
signups_per_year <- count(signups, name = "change")
signups_end_of_year <- filter(signups, date == max(date), total == max(total))
signups_per_year <- left_join(signups_per_year, signups_end_of_year)
#> Joining with `by = join_by(year)`
signups_per_year <- select(signups_per_year, year, change, total, per = date)
print(signups_per_year, n = Inf)
#> # A tibble: 10 × 4
#> # Groups:   year [10]
#>    year  change total per       
#>    <chr>  <int> <int> <date>    
#>  1 2017      16    27 2017-12-12
#>  2 2018      19    46 2018-11-30
#>  3 2019      75   121 2019-12-11
#>  4 2020      85   206 2020-12-22
#>  5 2021     107   313 2021-12-18
#>  6 2022     132   445 2022-12-21
#>  7 2023     162   607 2023-12-22
#>  8 2024     239   846 2024-12-28
#>  9 2025     441  1287 2025-12-23
#> 10 2026      21  1308 2026-01-17

## Signups per calendar month
signups <- group_by(signups, year, month)
signups_per_month <- count(signups, name = "change")
signups_end_of_month <- filter(signups, date == max(date), total == max(total))
signups_per_month <- left_join(signups_per_month, signups_end_of_month)
#> Joining with `by = join_by(year, month)`
signups_per_month <- select(signups_per_month, year, month, change, total, per = date)
print(signups_per_month, n = Inf)
#> # A tibble: 103 × 5
#> # Groups:   year, month [103]
#>     year  month change total per       
#>     <chr> <chr>  <int> <int> <date>    
#>   1 2017  02         1    12 2017-02-21
#>   2 2017  04         1    13 2017-04-25
#>   3 2017  05         1    14 2017-05-23
#>   4 2017  07         1    15 2017-07-04
#>   5 2017  08         2    17 2017-08-11
#>   6 2017  09         1    18 2017-09-20
#>   7 2017  10         2    20 2017-10-27
#>   8 2017  11         5    25 2017-11-21
#>   9 2017  12         2    27 2017-12-12
#>  10 2018  01         2    29 2018-01-26
#>  11 2018  02         3    32 2018-02-26
#>  12 2018  03         2    34 2018-03-29
#>  13 2018  05         2    36 2018-05-14
#>  14 2018  07         1    37 2018-07-18
#>  15 2018  08         3    40 2018-08-24
#>  16 2018  09         3    43 2018-09-07
#>  17 2018  10         1    44 2018-10-12
#>  18 2018  11         2    46 2018-11-30
#>  19 2019  01         1    47 2019-01-17
#>  20 2019  02        11    58 2019-02-21
#>  21 2019  03        14    72 2019-03-22
#>  22 2019  04         9    81 2019-04-30
#>  23 2019  05         6    87 2019-05-28
#>  24 2019  06         5    92 2019-06-30
#>  25 2019  07         5    97 2019-07-29
#>  26 2019  08         4   101 2019-08-26
#>  27 2019  09         9   110 2019-09-27
#>  28 2019  10         4   114 2019-10-31
#>  29 2019  11         5   119 2019-11-26
#>  30 2019  12         2   121 2019-12-11
#>  31 2020  01         6   127 2020-01-29
#>  32 2020  02         6   133 2020-02-29
#>  33 2020  03         8   141 2020-03-25
#>  34 2020  04         6   147 2020-04-20
#>  35 2020  05        10   157 2020-05-29
#>  36 2020  06         2   159 2020-06-19
#>  37 2020  07        10   169 2020-07-29
#>  38 2020  08        12   181 2020-08-31
#>  39 2020  09         9   190 2020-09-21
#>  40 2020  10         6   196 2020-10-30
#>  41 2020  11         7   203 2020-11-19
#>  42 2020  12         3   206 2020-12-22
#>  43 2021  01         8   214 2021-01-25
#>  44 2021  02         8   222 2021-02-26
#>  45 2021  03         8   230 2021-03-25
#>  46 2021  04         5   235 2021-04-27
#>  47 2021  05         7   242 2021-05-21
#>  48 2021  06         8   250 2021-06-30
#>  49 2021  07         6   256 2021-07-27
#>  50 2021  08        11   267 2021-08-30
#>  51 2021  09        15   282 2021-09-30
#>  52 2021  10        13   295 2021-10-27
#>  53 2021  11         8   303 2021-11-25
#>  54 2021  12        10   313 2021-12-18
#>  55 2022  01        11   324 2022-01-30
#>  56 2022  02        10   334 2022-02-26
#>  57 2022  03        15   349 2022-03-31
#>  58 2022  04         7   356 2022-04-27
#>  59 2022  05         9   365 2022-05-27
#>  60 2022  06         9   374 2022-06-25
#>  61 2022  07         8   382 2022-07-27
#>  62 2022  08         8   390 2022-08-31
#>  63 2022  09        25   415 2022-09-24
#>  64 2022  10        17   432 2022-10-26
#>  65 2022  11         9   441 2022-11-23
#>  66 2022  12         4   445 2022-12-21
#>  67 2023  01        14   459 2023-01-31
#>  68 2023  02         9   468 2023-02-24
#>  69 2023  03        10   478 2023-03-24
#>  70 2023  04        12   490 2023-04-26
#>  71 2023  05         8   498 2023-05-10
#>  72 2023  06        13   511 2023-06-30
#>  73 2023  07        14   525 2023-07-29
#>  74 2023  08        18   543 2023-08-29
#>  75 2023  09        32   575 2023-09-30
#>  76 2023  10        12   587 2023-10-24
#>  77 2023  11        14   601 2023-11-29
#>  78 2023  12         6   607 2023-12-22
#>  79 2024  01        21   628 2024-01-31
#>  80 2024  02        19   647 2024-02-29
#>  81 2024  03        11   658 2024-03-27
#>  82 2024  04        23   681 2024-04-24
#>  83 2024  05        14   695 2024-05-31
#>  84 2024  06        16   711 2024-06-28
#>  85 2024  07        23   734 2024-07-31
#>  86 2024  08        17   751 2024-08-31
#>  87 2024  09        45   796 2024-09-28
#>  88 2024  10        23   819 2024-10-31
#>  89 2024  11         9   828 2024-11-28
#>  90 2024  12        18   846 2024-12-28
#>  91 2025  01        38   884 2025-01-31
#>  92 2025  02        39   923 2025-02-28
#>  93 2025  03        34   957 2025-03-25
#>  94 2025  04        45  1002 2025-04-30
#>  95 2025  05        21  1023 2025-05-28
#>  96 2025  06        27  1050 2025-06-30
#>  97 2025  07        53  1103 2025-07-30
#>  98 2025  08        42  1145 2025-08-29
#>  99 2025  09        50  1195 2025-09-30
#> 100 2025  10        50  1245 2025-10-30
#> 101 2025  11        27  1272 2025-11-27
#> 102 2025  12        15  1287 2025-12-23
#> 103 2026  01        21  1308 2026-01-17


if (require("ggplot2", quietly = TRUE)) {
  gg <- ggplot(signups, aes(date, total)) + geom_line(linewidth = 2.0)
  gg <- gg + xlab("") + ylab("Number of users")
  gg <- gg + theme(text = element_text(size = 20))
  print(gg)
}