The number of Wynton users over time

users_over_time(file = NULL, since = "2017-01-01")

Arguments

file

A file with a single column of signup dates, or NULL. If NULL, then the Wynton LDAP server is queried.

since

Drop signup dates prior to this date.

Value

A tibble::tibble with columns date and total, total the cumulative sum based on date occurances.

Examples

library(dplyr)
#> 
#> Attaching package: ‘dplyr’
#> The following objects are masked from ‘package:stats’:
#> 
#>     filter, lag
#> The following objects are masked from ‘package:base’:
#> 
#>     intersect, setdiff, setequal, union

pathname <- system.file("exdata", "ldap_wynton_dates.txt", package = "wyntonquery")

signups <- users_over_time(pathname)
print(head(signups))
#> # A tibble: 6 × 2
#>   date       total
#>   <date>     <int>
#> 1 2017-02-21    12
#> 2 2017-04-25    13
#> 3 2017-05-23    14
#> 4 2017-07-04    15
#> 5 2017-08-10    16
#> 6 2017-08-11    17
print(tail(signups))
#> # A tibble: 6 × 2
#>   date       total
#>   <date>     <int>
#> 1 2025-12-05  1321
#> 2 2025-12-05  1322
#> 3 2025-12-11  1323
#> 4 2025-12-11  1324
#> 5 2025-12-11  1325
#> 6 2025-12-13  1326

## Summarize by year and month
signups <- mutate(signups, year = format(date, "%Y"))

## Signups per calendar year
signups <- mutate(signups, month = format(date, "%m"))
signups <- group_by(signups, year)
signups_per_year <- count(signups, name = "change")
signups_end_of_year <- filter(signups, date == max(date), total == max(total))
signups_per_year <- left_join(signups_per_year, signups_end_of_year)
#> Joining with `by = join_by(year)`
signups_per_year <- select(signups_per_year, year, change, total, per = date)
print(signups_per_year, n = Inf)
#> # A tibble: 9 × 4
#> # Groups:   year [9]
#>   year  change total per       
#>   <chr>  <int> <int> <date>    
#> 1 2017      15    26 2017-12-12
#> 2 2018      20    46 2018-11-30
#> 3 2019      77   123 2019-12-11
#> 4 2020      87   210 2020-12-22
#> 5 2021     108   318 2021-12-18
#> 6 2022     135   453 2022-12-21
#> 7 2023     171   624 2023-12-22
#> 8 2024     252   876 2024-12-28
#> 9 2025     450  1326 2025-12-13

## Signups per calendar month
signups <- group_by(signups, year, month)
signups_per_month <- count(signups, name = "change")
signups_end_of_month <- filter(signups, date == max(date), total == max(total))
signups_per_month <- left_join(signups_per_month, signups_end_of_month)
#> Joining with `by = join_by(year, month)`
signups_per_month <- select(signups_per_month, year, month, change, total, per = date)
print(signups_per_month, n = Inf)
#> # A tibble: 102 × 5
#> # Groups:   year, month [102]
#>     year  month change total per       
#>     <chr> <chr>  <int> <int> <date>    
#>   1 2017  02         1    12 2017-02-21
#>   2 2017  04         1    13 2017-04-25
#>   3 2017  05         1    14 2017-05-23
#>   4 2017  07         1    15 2017-07-04
#>   5 2017  08         2    17 2017-08-11
#>   6 2017  09         1    18 2017-09-20
#>   7 2017  10         1    19 2017-10-23
#>   8 2017  11         5    24 2017-11-21
#>   9 2017  12         2    26 2017-12-12
#>  10 2018  01         2    28 2018-01-26
#>  11 2018  02         4    32 2018-02-26
#>  12 2018  03         2    34 2018-03-29
#>  13 2018  05         2    36 2018-05-14
#>  14 2018  07         1    37 2018-07-18
#>  15 2018  08         3    40 2018-08-24
#>  16 2018  09         3    43 2018-09-07
#>  17 2018  10         1    44 2018-10-12
#>  18 2018  11         2    46 2018-11-30
#>  19 2019  01         1    47 2019-01-17
#>  20 2019  02        11    58 2019-02-21
#>  21 2019  03        14    72 2019-03-22
#>  22 2019  04         9    81 2019-04-30
#>  23 2019  05         7    88 2019-05-28
#>  24 2019  06         5    93 2019-06-30
#>  25 2019  07         5    98 2019-07-29
#>  26 2019  08         3   101 2019-08-26
#>  27 2019  09        11   112 2019-09-27
#>  28 2019  10         4   116 2019-10-31
#>  29 2019  11         5   121 2019-11-26
#>  30 2019  12         2   123 2019-12-11
#>  31 2020  01         6   129 2020-01-29
#>  32 2020  02         6   135 2020-02-29
#>  33 2020  03         8   143 2020-03-25
#>  34 2020  04         6   149 2020-04-20
#>  35 2020  05        10   159 2020-05-29
#>  36 2020  06         2   161 2020-06-19
#>  37 2020  07        10   171 2020-07-29
#>  38 2020  08        13   184 2020-08-31
#>  39 2020  09         9   193 2020-09-21
#>  40 2020  10         6   199 2020-10-30
#>  41 2020  11         8   207 2020-11-19
#>  42 2020  12         3   210 2020-12-22
#>  43 2021  01        10   220 2021-01-28
#>  44 2021  02         7   227 2021-02-26
#>  45 2021  03         8   235 2021-03-25
#>  46 2021  04         5   240 2021-04-27
#>  47 2021  05         7   247 2021-05-17
#>  48 2021  06         9   256 2021-06-30
#>  49 2021  07         6   262 2021-07-27
#>  50 2021  08        11   273 2021-08-30
#>  51 2021  09        14   287 2021-09-30
#>  52 2021  10        12   299 2021-10-27
#>  53 2021  11         8   307 2021-11-25
#>  54 2021  12        11   318 2021-12-18
#>  55 2022  01        11   329 2022-01-30
#>  56 2022  02        10   339 2022-02-26
#>  57 2022  03        15   354 2022-03-31
#>  58 2022  04         8   362 2022-04-27
#>  59 2022  05         9   371 2022-05-27
#>  60 2022  06         9   380 2022-06-25
#>  61 2022  07         8   388 2022-07-27
#>  62 2022  08         9   397 2022-08-31
#>  63 2022  09        24   421 2022-09-24
#>  64 2022  10        15   436 2022-10-26
#>  65 2022  11        13   449 2022-11-29
#>  66 2022  12         4   453 2022-12-21
#>  67 2023  01        14   467 2023-01-31
#>  68 2023  02         9   476 2023-02-24
#>  69 2023  03        11   487 2023-03-24
#>  70 2023  04        13   500 2023-04-26
#>  71 2023  05         8   508 2023-05-10
#>  72 2023  06        13   521 2023-06-30
#>  73 2023  07        14   535 2023-07-29
#>  74 2023  08        17   552 2023-08-29
#>  75 2023  09        34   586 2023-09-30
#>  76 2023  10        12   598 2023-10-24
#>  77 2023  11        18   616 2023-11-29
#>  78 2023  12         8   624 2023-12-22
#>  79 2024  01        22   646 2024-01-31
#>  80 2024  02        23   669 2024-02-29
#>  81 2024  03        11   680 2024-03-27
#>  82 2024  04        23   703 2024-04-24
#>  83 2024  05        13   716 2024-05-31
#>  84 2024  06        16   732 2024-06-28
#>  85 2024  07        23   755 2024-07-31
#>  86 2024  08        16   771 2024-08-31
#>  87 2024  09        41   812 2024-09-28
#>  88 2024  10        24   836 2024-10-31
#>  89 2024  11        14   850 2024-11-28
#>  90 2024  12        26   876 2024-12-28
#>  91 2025  01        40   916 2025-01-31
#>  92 2025  02        41   957 2025-02-28
#>  93 2025  03        35   992 2025-03-25
#>  94 2025  04        46  1038 2025-04-30
#>  95 2025  05        20  1058 2025-05-28
#>  96 2025  06        26  1084 2025-06-30
#>  97 2025  07        56  1140 2025-07-30
#>  98 2025  08        43  1183 2025-08-29
#>  99 2025  09        50  1233 2025-09-30
#> 100 2025  10        51  1284 2025-10-30
#> 101 2025  11        31  1315 2025-11-27
#> 102 2025  12        11  1326 2025-12-13


if (require("ggplot2", quietly = TRUE)) {
  gg <- ggplot(signups, aes(date, total)) + geom_line(linewidth = 2.0)
  gg <- gg + xlab("") + ylab("Number of users")
  gg <- gg + theme(text = element_text(size = 20))
  print(gg)
}